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The Hierarchical Random Field Ising Model 
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We introduce and solve explicitly a hierarchical approximation to the random 
field Ising model. This approximation is defined in terms of Peierts' contours. It 
exhibits a spontaneous magnetization in d >  2 and illustrates some of the ideas 
used in the proof of that result for the real RFIM. In d =  2, there is no spon- 
taneous magnetization, but a very slow decay of correlations. However, we 
argue that this latter property is an artifact of the approximation. For the real 
RFIM, we expect exponential decay of correlations for any value of the dis- 
order. 

KEY W O R D S :  Random fields; renormalization group; Peierls contours. 

1, I N T R O D U C T I O N  

In this paper, we discuss some unresolved issues concerning the lower 
critical dimension d~ of the random field Ising model. The latter is defined 
by the Hamiltonian 

(xy) x 

where x ~ Z  d, (xy) are nearest neighbor pairs, a x =  +1, and {hx} are 
independent random variables of mean zero ( / ix=0)  and variance e 2 

It is known that, if d~> 3, a phase transition occurs when e is varied for 
/~= T -~ large. For  e small, ferromagnetism persists, (1'2) while for e large, 
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the spins tend to be aligned along the direction of the field. (3'4) This shows 
that, by definition, dt~<2. The Imry-Ma argument, (5) the predictions of 
which are vindicated by those results in d>~ 3, suggests quite convincingly 
that in d =  2, ferromagnetism will be destroyed for any ~ ~ 0  (thus that 
dr= 2). However, for reasons discussed below, this part of the Imry-Ma 
argument seems harder to prove than the results concerning the stability of 
ferromagnetic order in d ~> 3. Ironically, it is the d 7> 3 part of the argument 
that was challenged some time ago, (6) while the d = 2  part seems to be 
generally accepted. 

In this paper, we reconsider the Imry-Ma argument for d = 2  and 
discuss the following question: 

Does the correlation function (O'00"y) (the bar denotes average over 
randomness, and ( - )  is the thermal average) decay exponentially in x? It 
has been argued (7) that, at least in the limit T =  0 and for e small, the latter 
may decay only according to a power law, thus exhibiting a massless phase. 
Other authors (s~ argue that there is exponential decay with a correlation 
length ~(e) = exp O(e-2). 

Although we cannot resolve rigorously this issue, we construct and 
solve a hierarchical model which approximates the RFIM and has the 
following properties: 

1. There is long-range order in d >  2. 

2. For d =  2, there is no long-range order, but 

( a o a x ) ~ - ( l o g l o g l x [ )  -p for some p > O  (1.2) 

so that the decay is very slow indeed. As we show, this model is a slight 
improvement over the Imry-Ma argument because it includes the influence 
of "contours within contours." The latter actually tend to lower the 
fluctuations of the field, because of a "screening" effect. However, we show 
that they do not lower those fluctuations enough to invalidate the main 
conclusion of the Imry-Ma argument, namely the absence of long-range 
order. 

The hierarchical model can be described as follows: on each scale, the 
lattice is a disjoint union of blocks whose boundaries are the contours. L d 
blocks on one scale form one block of the next scale. Contours are 
independent of each other in a given scale and also between scales. On the 
first scale each block is a site on which a random field lives. We obtain an 
exact recursion relation for the effective random fields on later scales. The 
variance of the field on the nth scale satisfies the recursion relation 

2 = e21-1 O(ene- 1/2"2")] (1.3) en+l 
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where the second term reflects the influence of contours (on the nth scale) 
within contours [on the (n + 1)th scale]. Thus, the variance, constant to 
leading order (which is really the content of the Imry Ma argument) goes 

is not rapid enough very slowly to zero [e~ ,-~ (In n) - l ] .  This decrease of e n 
to produce long-range order (for comparison, when d>2,  e2,,-,L(2-d)"), 
but does cause the slow decay in (1.2). 

Now one should ask: Do the recursion (1.3) and the decay (1.2) hold 
for the real (Ising) model? We believe that they do not and that they are 
basically an artifact of the hierarchical nature of the model. Indeed, by 
imposing that every contour be the boundary of a cube, we neglect the 
crucial fluctuations in the shapes of the contours. The real contours have 
lots of wiggles and may therefore take advantage of small fluctuations in 
the field. When these are taken into account, we find that the real recursion 
for ~. appears to be (for g small at least) 

en+12 =e2+O(E4) (1.4) 

where the second term here is more relevant than the second term in (1.3) 
(see Section 3). Our arguments for (1.4) are very close to those used by 
Binder (9) when he studied the interface of the d =  2 RFIM. See also ref. 10. 
From (1.4) one expects that e grows under renormalization and since there 
certainly is exponential decay of correlations for e large, (3'4) one expects a 
finite correlation length for all e ~ 0  with ~(e)~ exp O(e 2). However, this 
is generally hard to prove. Even if (1.4) can be rigorously established for e 
small, it is difficult to control the flow of e in the "intermediate" region, 
where e is neither big nor small. This is a common problem encountered by 
rigorous renormalization group arguments. For instance, in the two-dimen- 
sional O(N) rotator models for N ~> 3 one can compute the flow of the tem- 
perature under renormalization. (1~) For small T, the system is driven 
toward higher temperatures, suggesting convergence toward the trivial 
fixed point T= o9 and exponential decay of correlations for all Tr  
However, again, the intermediate region appears to be difficult to control. 
Pursuing this analogy, the Imry-Ma argument is similar to the Mermin- 
Wagner argument (except that the latter is rigorous): it indicates that there 
is no long-range order, but does not distinguish between exponential and 
nonexponential decay of correlations. 

in the next section, we give some background on the renormalization 
group approach to the random field model and we formulate and solve the 
hierarchical model. In Section 3, we discuss the real model and argue that 
(1.4) should be the true flow of the variance of the field. 
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2. THE HIERARCHICAL R A N D O M  FIELD MODEL 

We start by reviewing the contour representation of the RFIM and the 
renormalization group strategy of ref. 2. In so doing, we also recall the 
Imry-Ma argument. After that, we define and solve the hierarchical model. 

Consider a box V_  Z d centered around the origin with IV[ = L dN. 
Throughout this paper, L is an arbitrary, but fixed, constant. Let us put + 
boundary conditions outside V. Then 

Z+ (V) = ~ e x p [ - / ~  + (o-)3 
Ce 

= c o n s t x ~  1-I e-~J~le~E(h'v+~r))-(h'v (r))l (2.1) 
I -  y ~ / "  

where the sum over F runs over compatible families of contours (i.e., dif- 
ferent contours are disjoint and the signs that they determine match). 
V+(F) are the +_ regions of V determined by F and (h, A) - ~2x~A hx. The 
constant in (2.1) is unimportant. 

The two main steps in the renormalization group transformation of 
ref. 1 are: 

1. Split the sum (2.1) into small and large contours. Small contours 
have a diameter less than L (and, moreover, all the fields within the con- 
tour are small; however, we shall not need this constraint in the explicitly 
solvable case below). Then, integrate out "explicitly" the small contours. 
This produces a new field, approximately equal to 

H ' = L I - a ( ~  L Hy + free energy of small contours) (2.2) 
y x 

where x e Z '~ indexes disjoint L a blocks of the original lattice; Lx denotes 
the block indexed by x. The L I -  a factor in (2.2) is explained by the next 
step. 

2. Block, or resum, the remaining large contours. Define the con- 
tours on the new lattice (composed of L a blocks of the previous lattice) by 

~ ~ 7'= {xlTc~ Lx ~ ~ }  (2.3) 

and let the activities of the new contours 7' be (approximately) the sum of 
the ones of the old contours that are mapped onto 7': 

P'(7') = Z  1~ P(7) (2.4) 
F ?,e/- 

whe re  p(7 )=e -PM and the sum is over compatible F's s.t. 7'= 
{xlr Lx  ). 
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From the fact that contours are (d-1)-dimensional  (hyper)surfaces 
one gets that 

P'(7') ~< e-~' 17'l (2.5) 

with [7'J = number of points in 7 ~ ( i . e . ,  blocks in the original lattice) and 

fl, ,~ L d-  l fl (2.6) 

(This holds only for contours ~' that are the boundary of their interior. But 
here we shall not consider the other contours, ref. 2.) The L a-1 factor in 
(2.6) explains the L 1-d factor in (2.2), because we keep the fl (or fl') factor 
multiplying the field [ f l ' H ' x = ~ y ~ c x f l H ~ + f l  (free energy of small con- 
tours)]. It is easy, but important, to convince oneself that this is the correct 
normalization. 

From (2.2) one gets that the variance of the field flows as 

(~') =- Z 2 - ~  2 (2.7) 

The Imry-Ma argument, based on (2.6) and (2.7), is that the disorder 
and the temperature are irrelevant for d >  2 and so ferromagnetism should 
persist. However, for d =  2 the disorder persists on all scales (while T still 
goes to zero) and one should not expect the ferromagnetic order to be 
stable against this random perturbation. 

Now we turn to the hierarchical model, where the renormalization 
group transformation can be carried out exactly. Actually, only the first 
step (integrate small contours) needs to be done, because on each scale we 
have essentially only one contour to consider and so there is no blocking. 

The hierarchical model is defined by keeping in (2.1) only contours 
that are boundaries of L a" blocks, and moreover by modifying the com- 
patibility constraint so that all such contours are compatible (i.e., they 
occur totally independently of each other, at a given scale and between 
scales). More precisely, on all scales L n, n = 0,..., N (L dx is the volume of 
the box) we index the contours 7 by C~, the (disjoint) Lan-cubes centered at 
L"x. The y(C~) has activity e x p [ -  (fi/2d) [8C~[ ] = e x p ( - f i  [7[) and ~(C~) 
flips spins in C~. Denoting this constraint on the sum in (2.1) by prime, we 
may immediately carry out the scale n = 0 sum: 

Z(N ,  h, f l ) -  ~ '  1-[ e-~l~ie~(h'v+~-~h'v-~ 
F 7 ~ F  

= ~ '  lq e ~l~le~(h+ah+'v+) ~(h+ah-,v-) (2.8) 
FI  7 E F I 
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where 6h + are given by the small contour partition functions: 

e +--B(h+ah• [ I  ( C +-Bhy + e-Be-yBhy) 
y c  L x  

(2.9) 

where 

and upon iteration 

Defining 

we get 

f l l  = L d 1j~ (2.10) 

h ( x = L  1 d ( h + 6 h •  (2.11) 

Z(N,  h, f l)= Z ( N -  1, h~, ill) 

=_ ~ '  l~ e--Bl lTleBl(hV,V+)--Bl(hV,V ) 
F 

Z(N,h ,  f l ) = Z ( N - n , h ~ , f l ~ )  

and 

ft, = L,(d 1)fl (2.14) 

and hi~ satisfy the recursion 

h++lx=Ll -dy~Lx  h++--fl-~ l ~  B~e~-B"(h"+~+h')] (2.15) 

or define h + + h  = H  (H here is like the H in ref. 2, but there is a 
difference of sign in the definition of h + ), 

Z(N,  h, fl) = e B~ ' v " )2 (N-  n, H , ,  ft,) (2.16) 

Z ( N - n ,  H, ,  f t , ) = ~ '  1-I e-e" lyle fln(Hn'V ) (2.17) 

H.+,x=L '-d ~ [H.y+f.(H.y)] (2.18) 
y e  Lx  

(2.12) 

(2.13) 

(at each y ~ Lx  we may or may not have a contour that flips the spin at y 
and has activity e B). 

In the rhs of (2.8) we have only large contours, i.e., those on scale 
n r  
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with 

It is easy to see that 

1 l o g l + e  &o+x} 
f , (x )  = fl--~ 1 + e ~"(1 -~) (2.19) 

J X - } - f n ( x ) l  ~ [-1 -[- O(fin-1)] IX[ (2.20) 

Thus, the free energy of the system is given by the random variable 

-- Nd + 
V N = L ~ N h N o  (2.21) 

and, see (2.15), 

with 

h++l~= L1 a ~ [ h + +  g,(Hy)]  (2.22) 
y~  Lx 

1 +x)) 
g , (x )  =~,, log(1 + e -~(1 

Hence we need to control the flow of H,x, which are independent random 
variables for n fixed. Before embarking on that, let us derive analogous 
formulas for correlations. Consider first the 1-point function 

where 

(O'o) ~ = Z - I ~  Fie ~ryle~[(h,v+) (h,v-)]O-o(F) 
F 

(2.23) 

a o ( F ) = ( a J - = l  if 0~V + 
~o o - 1  if 0e  V- (2.24) 

[zero on the lhs of (2.23) refers to the origin in Z d, on the rhs to the zeroth 
step of iteration!]. We get the analogue of (2.23) for the nth step with 

a + = (a~+-i +an.~_le-~"e-V/3"H"~ + e - & e  v & " ~  (2.25) 

and then 

( a o ) +  = a~ (2.26) 

Let us now analyze (2.18). First let d >  2. Assume 

( etH" > ~< e '2e2/2 (2.27) 

822,/51/5-6-19 
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Then, since Hn.v are independent for different y's and fn is an odd function, 

<e,U.+~} = <eC(H.+f.)>L a ( t '=tL l-a) 

= <cosh t'(H. +f . )>Le 

~< (cosh t'[1 + O(fl~-~)] H . }  Le [using (2.20)] 

= <exp{t'[1 + O(fl2 ~)] H.}  >L~ 

<~ e~2.+ l tz/2 

with 

2 (2.28) en ,=L2-d[ l  +O(fl#l)]e. 

(2.27) implies that Prob(IH.I >x)<.2exp[-(x2/2~])], which, combined 
with (2.25), easily yields 

a---~ > 1 - e c~ _ e-~'/~2 (2.29) 

(bar = average over disorder), i.e., the system is indeed ordered for d >  2. 
The d =  2 case is more interesting. Since fin---' 00 rapidly, let us set 

fl = oo [-the errors being negligible, i.e., O(fl#l)] .  Then 

l l x > l  

x+foo(x)= x x ~ [ - 1 ,  1] 
- 1  x < ' - I  

(2.30) 

and we have to study the recursion relation between random variables 
given by [-see (2.18)] 

H,+,~=L ~ ~ [H.y+fo~(H.y)] (2.31) 
y ~  L x  

We claim that this recursion drives the variance toward zero. Indeed, 

: a ) 
e n +  1 ~--- < H , +  1 

= ( [ H . + f o o ( H . ) ] 2 }  

= <H 2 } -  <(H 2 -  1) z ( ( H . ) >  1)} 

= <H.2>-  < (H .  2 -  1)1 [Hnt > 1}<z(IHnl > 1)} 

= g ]  - k (e , , )  (2.32) 

<FIA } is the expectation of F conditioned on A) where, obviously, if e, 



The Hierarchical Random Field Ising Model 1029 

did not go to zero, k(en) would remain bounded away from zero and a 
contradiction would follow. Thus, e n ~ 0. To see how fast, we use 

and 

2 ( (Hn- -  1)l IH,,[ > 1) = O(e]) 

(z ( IH,  I > 1)) = O(en) exp(-e22/2)  (2.33) 

which follows from an analysis of (2.31): this recursion keeps H 
approximately Gaussian but with decreasing variance. By (2.32) and (2.33), 

2 = a][1 - O(e,) e - ~;2/2)] gn+ 1 

which, to leading order, gives 

% 2 ~ (log n ) - i  

and 

(2.33) = O[(n log n)-1]  (2.34) 

Now we compute the magnetization, averaged over the disorder. First, 
l e t t i n g / / ~  oe; one gets from (2.25) 

N 

aN+-- [ l  ~(H,o) (2.35) 
n - - O  

where 

~(Hno) = { -  1 if ]Hnol > 1 
+1 if [Hnol < 1 

i.e., aN changes sign as often as some Hno forces a contour to occur. (We 
neglect ]H,,ol ~ 1, which has zero probability.) 

If the H~o were independent for different n's, we would have 

N 

aN +-- l~ [P(lnnol < 1 ) - e ( l n = o l  > 1)] 
n = 0  

N 

= I-I I -1-2P(lnnol  > 1)] (2.36) 
n = 0  

The H~o are not quite independent of each other, but almost [-Hno affects 
Hn+ 1 only by O(L-1);  see (2.30), (2.31)] and one gets 

N 

~rN+ ~_ ~ [1-O(1)P(IH,,I >1)3 (2.37) 
n = 0  
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which, by (2.33), (2.34) gives 

_ [ N ] 
a~---exp - O ( 1 )  ~ (n logn)  -1 

n ~ l  

= (log N) p some p > 0 (2.38) 

The approach of the magnetization to zero is similar here to the decay 
of the two-point function, which can be calculated as above, and satisfies 

(aoCrx)-~(loglog[xl)  P some p > 0  (2.39) 

(since Ix t ~ LN). 
Let us add some remarks: 

1. In the linear approximation to (2.32) (k = 0), which is the Imry-  
Ma argument, contours occur on all scales with a nonzero probability and 
are almost independent; therefore, infinitely many contours occur and the 
state is disordered. However, one must observe that, if a contour occurs on 
a given scale, the field inside it contributes less to the field on the next scale 
than if there had been no contour. The large fields "screen" themselves by 
producing contours that surround them. This is the content of (2.30) and 
(2.31), where a cutoff appears in the contribution of a large field to the next 
scale. However, as we have seen, all this does is to make contours more 
rare (but still infinitely many occur) and thus to slow down the decay of 
correlations. 

2. It is interesting to compare the decay of (aO~rx) with that of other 
correlations. First consider, at fixed fl < o% the decay of 

(~ro, ~ x )  - ( O - o ~ x )  - ( ~ o ) ( ~ x )  

With probability one (in h) this will be O(e -c~ lxl) (for d =  2). Indeed, this 
measures only thermal fluctuations and the latter are as much suppressed 
here as in the usual model. One may also consider (a0; ax).  We claim that 
this will be O(Ixl-x) (up to logarithmic corrections). Indeed, this decay is 
dominated by that of 

P(IH, + 1[ = 0(fl21)) (2.40) 

with L" =~ ]xl. 

Indeed, for those events, contours surrounding both 0 and x can occur 
with large probability in the thermal average. Now (2.40) decays like 
fl~-I ~ L - ' ~  Ix[ i, to leading order. 



The Hierarchical Random Field Ising Model 1031 

3. T H E  R E N O R M A L I Z A T I O N  G R O U P  F L O W  
IN T H E  IS ING M O D E L  

As we said, there are two steps in the RG transformation of ref. 2: 
integration of the small contours and blocking of the large ones. 

We expect that the first step is roughly similar to the hierarchical 
model, giving only a correction O[~ 3 exp(-1/2e2)].  However, we want to 
argue that the blocking leads to a bigger correction, and with the opposite 
sign. 

Indeed, in the previous discussion [see Eq. (2.4)] of the blocking, we 
neglected an important contribution due to the fields in L~'- {Lxlx ~ 7'} 
(i.e., the blocks indexed by ~'). To be precise, p(F) in (2.4) should be mul- 
tiplied by 

exp(fl((h, V + (F) c~ LT' ) - (h, V (F) ~ LT'))) (3.1) 

These are the fields inside LT'. When one considers d > 2 ,  they are 
irrelevant and can be neglected. To see how they affect the flow in d = 2, we 
have to find how the 

rain ( [ F t - ( h ,  V+(F)caL~')+(h, V-(F)c~LT')) (3.2) 
F ~  LT' 

behaves. Indeed, this corresponds to the largest term in (2.4) and deter- 
mines the behavior of P'(7'). To simplify, let F =  {7} consist of one contour 
and let ~' be sufficiently long. Without the h terms, the minimum is simply 
the shortest 7 in LT' and is of order L 17'[- However, as observed by 
Binder, (9) local fluctuations in the h may actually make it favorable for 7 to 
make a detour [that modifies V-+(7)]. Actually, for every part of 7 of size 
O(e-2), the fluctuations of the fields are of order eO(e-~)= O(1), and, if 
they have the right sign, may make kinks [with energy also O(1)] in 7 
favorable. And this reduces the energy by an amount proportional to the 
number of disjoint subsets of 7 of size O(e-2), i.e., by O(e 2) 17[. So we 
expect P'(7') to have a bound exp(-/~ '  [7'[), but with 

/~'=/3L[1 - O(~2)] (3.3) 

by which means that one should normalize H' [see (2.2)] 
L-~[1 _ O(e2)]-1. This, in turn, implies that the variance flows as 

(e,)z = ~2/[ 1 _ O(e2)]2 ~ e2 + O(~4) (3.4) 

(we assume everywhere that ~ is small). 
This is the basic relation indicating that e grows under renor- 

realization. If we extrapolate (3.4) to higher e's, we see that after a number 
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n of interactions I-n= O(•--2)], e n becomes O(1) and there the correlation 
length is also O(1) .  (3"4) This leads us to expect a finite correlation length 
~(e) = L" = exp O(e 2). 

To conclude, the picture of the typical configurations for any e ~ 0 
should be the same as for large e, but on a scale of order ~(~). That is, there 
should be intertwined patches of plus and of minus spins, whose diameter 
is of order r The boundary between these patches forms'a connected 
(infinite) contour. This is quite different from the picture that emerged from 
the hierarchical model: a sequence of nested squares with corridors of a 
given sign. However, this latter picture seems unstable if we allow fluc- 
tuations in the shape of the contours and should therefore be regarded as 
an artifact of the hierarchical model. Let us also mention that another 
defect of this model is that it does not have a high-temperature, large-field 
phase in d > 2. 
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